A tale of two continents: Baker's rule and the maintenance of self-incompatibility in Lycium (Solanaceae).
نویسندگان
چکیده
Over 50 years ago, Baker (1955, 1967) suggested that self-compatible species were more likely than self-incompatible species to establish new populations on oceanic islands. His logic was straightforward and rested on the assumption that colonization was infrequent; thus, mate limitation favored the establishment of self-fertilizing individuals. In support of Baker's rule, many authors have documented high frequencies of self-compatibility on islands, and recent work has solidified the generality of Baker's ideas. The genus Lycium (Solanaceae) has ca. 80 species distributed worldwide, and phylogenetic studies suggest that Lycium originated in South America and dispersed to the Old World a single time. Previous analyses of the S-RNase gene, which controls the stylar component of self-incompatibility, have shown that gametophytically controlled self-incompatibility is ancestral within the genus, making Lycium a good model for investigating Baker's assertions concerning reproductive assurance following oceanic dispersal. Lycium is also useful for investigations of reproductive evolution, given that species vary both in sexual expression and the presence of self-incompatibility. A model for the evolution of gender dimorphism suggests that polyploidy breaks down self-incompatibility, leading to the evolution of gender dimorphism, which arises as an alternative outcrossing mechanism. There is a perfect association of dimorphic gender expression, polyploidy, and self-compatibility (vs. cosexuality, diploidy, and self-incompatibility) among North American Lycium. Although the association between ploidy level and gender expression also holds for African Lycium, to date no studies of mating systems have been initiated in Old World species. Here, using controlled pollinations, we document strong self-incompatibility in two cosexual, diploid species of African Lycium. Further, we sequence the S-RNase gene in 15 individuals from five cosexual, diploid species of African Lycium and recover 24 putative alleles. Genealogical analyses indicate reduced trans-generic diversity of S-RNases in the Old World compared to the New World. We suggest that genetic diversity at this locus was reduced as a result of a founder event, but, despite the bottleneck, self-incompatibility was maintained in the Old World. Maximum-likelihood analyses of codon substitution patterns indicate that positive Darwinian selection has been relatively strong in the Old World, suggesting the rediversification of S-RNases following a bottleneck. The present data thus provide a dramatic exception to Baker's rule, in addition to supporting a key assumption of the Miller and Venable (2000) model, namely that self-incompatibility is associated with diploidy and cosexuality.
منابع مشابه
The transition to gender dimorphism on an evolutionary background of self-incompatibility: an example from Lycium (Solanaceae).
Populations of three North American species of Lycium (Solanaceae) are morphologically gynodioecious and consist of male-sterile (i.e., female) and hermaphroditic plants. Marked individuals were consistent in sexual expression across years and male sterility was present throughout much of the species' ranges. Controlled pollinations reveal that L. californicum, L. exsertum, and L. fremontii are...
متن کاملPolyploidy and the evolution of gender dimorphism in plants.
Gender dimorphism and polyploidy are important evolutionary transitions that have evolved repeatedly in many plant families. We show that gender dimorphism in North American Lycium (Solanaceae) has evolved in polyploid, self-compatible taxa whose closest relatives are cosexual, self-incompatible diploids. This has occurred independently in South African Lycium. We present additional evidence fo...
متن کاملAssociation of ploidy and sexual system in Lycium californicum (Solanaceae).
In North American Lycium (Solanaceae), the evolution of gender dimorphism has been proposed as a means of restoring outcrossing after polyploidization causes the loss of self-incompatibility. Previous studies of this process in Lycium focused on comparisons between species that differ in ploidy. We examined intraspecific variation in floral morphology and DNA content in populations of L. califo...
متن کاملOut of America to Africa or Asia: inference of dispersal histories using nuclear and plastid DNA and the S-RNase self-incompatibility locus.
The plant genus Lycium (Solanaceae) originated in the Americas and includes approximately 85 species that are distributed worldwide. The vast majority of Old World species occur in southern Africa and eastern Asia. In this study, we examine biogeographic relationships among Old World species using a phylogenetic approach coupled with molecular evolutionary analyses of the S-RNase self-incompati...
متن کاملHistorical inferences from the self-incompatibility locus
Ancient polymorphism preserved at the self-incompatibility locus facilitates investigation of historical occurrences far older than extant species. We outline two ways in which studies of the S-locus can provide insights into patterns of speciation. First, we review evidence concerning the prevalence of founder events in speciation. A dramatic population size reduction is expected to reduce seq...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Evolution; international journal of organic evolution
دوره 62 5 شماره
صفحات -
تاریخ انتشار 2008